Much as a bolt of lightning can strike in one spot and travel, creating a path of destruction in its...
Science that is transforming lives and enabling the future
Much as a bolt of lightning can strike in one spot and travel, creating a path of destruction in its wake, a single electrostatic discharge can have a similar effect on a semiconductor manufacturer’s bottom line. For advanced-node manufacturers, the risk posed by electrostatic discharge has become amplified by the move to fluoropolymers, a consequence of stainless-steel process tool components failing to meet increased purity requirements.
The drive for ever more powerful microprocessors and greater memory storage places demands on all steps of the semiconductor wafer fabrication process. At some point, incremental improvements are no longer sufficient, and further device shrinking requires a completely different technology. The semiconductor industry is now experiencing this with lithography, where extreme ultraviolet (EUV) lithography is replacing 193 nm immersion (193i) lithography for more and more critical chip layers.
NEW PARADIGMS IN MATERIALS DEPOSITION FOR BOTH LOGIC AND MEMORY DEVICE MANUFACTURING We live in an increasingly connected world that has developed an almost unquenchable thirst for data. To process this raw data into something that is actionable requires the most advanced artificial intelligence (AI) chips for a multitude of applications, from machine learning and autonomous vehicles, to smart cities and efficient energy sources. The quest to develop these devices is driving integrated device manufacturers (IDMs) to push semiconductor manufacturing technology to its very limits.
Entegris recently wrapped up an exciting week at the first-ever SEMICON West virtual event. The event provided a great opportunity to connect with the community and gain valuable insight into the future of the industry.
Entegris is excited to celebrate the 50th anniversary of SEMI by coming together for the landmark virtual event to reaffirm our commitment to creating unique value for our customers and partners.
Photochemicals are playing an increasingly important role in bringing next generation devices to reality. While semiconductor manufacturing has always needed a pure, contamination-free environment, the requirements are tightening even further.
DRAM architecture has remained virtually unchanged for the past decade, with the dimensions shrinking proportionally with each successive device node. This linear path, however, is reaching its limits for nodes below 20 nanometers (nm) including 1x, 1y, 1z, 1a, and 1b. A major change will be needed soon if DRAM is to keep up with advances in logic.
The rapid increase of semiconductors in cars enables significant safety, connectivity, mobility, and sustainability improvements. The standards to measure reliability under the tough conditions a car presents are based on how vehicles operate today. Conventional vehicles are generally idle 95% of the time. As a result, the expected lifetime of the electronics systems is well beyond the lifetime of the vehicle itself.
To meet increasing sensitivity to contaminants in integrated circuit (IC) manufacturing, semiconductor fabs have begun looking to their chemical suppliers to adopt new contamination control standards that improve quality and assist in reducing wafer defects. Each material has several touch points along the chemical manufacturing, storage, transport, and delivery journey that could add or generate contaminants. Semiconductor fabs seek assurance from their materials suppliers that they will minimize opportunities for contaminants to end up on a wafer (Figure 1).
The automotive supply chain is transforming with the development of autonomous vehicles. The rise of electronic systems leads designers and manufacturers to seek collaboration partnerships. Antoine Amade, senior director EMEA/NA sales, was recently interviewed by SEMI to discuss the zero-defect challenges facing semiconductor fabs and the expansion of the GAAC (Global Automotive Advisory Council).
During the semiconductor manufacturing process, contamination can be introduced from the air, equipment, cleanroom personnel, process water, process chemicals, and process gases.1 Careful identification of the contaminant source is required to best identify mitigation strategies that utilize filtration. Installing a filter can reduce defectivity, but this mitigation strategy will not indefinitely protect a gas stream from contamination.
Dewetting and non-dewetting are not common terms used every day, yet are vital to the functionality of liquid filters.
Much as a bolt of lightning can strike in one spot and travel, creating a path of destruction in its...
The drive for ever more powerful microprocessors and greater memory storage places demands on all st...
NEW PARADIGMS IN MATERIALS DEPOSITION FOR BOTH LOGIC AND MEMORY DEVICE MANUFACTURING We live in an i...
Entegris recently wrapped up an exciting week at the first-ever SEMICON West virtual event. The even...
Entegris is excited to celebrate the 50th anniversary of SEMI by coming together for the landmark vi...
Photochemicals are playing an increasingly important role in bringing next generation devices to rea...
DRAM architecture has remained virtually unchanged for the past decade, with the dimensions shrinkin...
The rapid increase of semiconductors in cars enables significant safety, connectivity, mobility, and...
To meet increasing sensitivity to contaminants in integrated circuit (IC) manufacturing, semiconduct...
The automotive supply chain is transforming with the development of autonomous vehicles. The rise of...
During the semiconductor manufacturing process, contamination can be introduced from the air, equipm...
Dewetting and non-dewetting are not common terms used every day, yet are vital to the functionality ...
© 2024 Entegris. All Rights Reserved