Science that is transforming lives and enabling the future

Entegris ESD Valves, Fittings, and Tubing: An Introduction

Entegris ESD Valves, Fittings, and Tubing: An Introduction

Entegris ESD Valves, Fittings, and Tubing: An Introduction

Gas Purifier Regeneration: Putting Circularity into Practice

Gas Purifier Regeneration: Putting Circularity into Practice

Hydrogen Gas: Revolutionizing Semiconductors and Clean Energy

Hydrogen composes about 75% by mass of the normal matter in the universe, existing as H2 gas under standard conditions. This abundance of supply creates opportunities in numerous applications, including semiconductor manufacturing, for which hydrogen is considered a bulk gas and is employed in many parts of the ecosystem.

New Materials: Smoothing the Transition to Molybdenum

Changing one material in the semiconductor manufacturing process has a cascading effect on multiple process steps. Consider the replacement of tungsten (W) and copper (Cu) with molybdenum (Mo). Integrated device manufacturers (IDMs) are implementing Mo in advanced designs, focusing on 2-nanometer (nm) nodes and below. Mo is highly conductive, can be deposited without a titanium or titanium nitrid

  • September 25, 2023

Not Your Average Wafer: Solving CMP Challenges in High-Volume SiC Production

Silicon carbide (SiC) has become popular with chipmakers. Its wide-bandgap structure offers many design benefits for the operations of power semiconductors. Compared to silicon, SiC wafers enable the fabrication of faster, more efficient devices that can both operate at higher temperatures and remain stable when deployed in extreme temperature environments. Processing SiC wafers using the same materials and methods as silicon wafers is not a viable option, however.

  • September 12, 2023

Putting Filtration to Work for Photoresist Contamination Control

If you asked a semiconductor process engineer to name their biggest challenge when tackling the next technology node, they would likely tell you it is figuring out how to achieve high device yields. This is mainly due to an increase in possible points of contamination as the number of potential contaminants grows and their sizes shrink. It is becoming particularly difficult to detect metal contaminants and pinpoint their root cause so they can be eliminated. That’s because they can form anywhere in the process flow.

Targeted Removal: Beyond the Coffee Filter Analogy

In the early days of semiconductor manufacturing, fabs would remove contaminants from their process fluids in a sequence that could be analogized to making a cup of coffee. By using a filter with tiny pores, large contaminants (coffee grounds) are separated from water. Because the coffee grounds are too large to pass through the filter, they can’t pass into the coffee we drink.

Achieving the Third Dimension Through Molecular Modeling

For decades, the semiconductor device manufacturing mantra was “How do we make them smaller, cheaper, and faster?” The pursuit of Moore’s Law – the doubling of transistors on a chip every two years – was achieved through planar scaling. But that approach could only go on for so long. The mantra now is “How do we improve power, performance, area, and cost (PPAC)?” At the 14 nm node, it was clear that the best way to push the limits of semiconductor device PPAC was to take it into the third dimension.

What Lies Beneath the Surface of Semiconductor Manufacturing

Things are not always as they appear. Take semiconductor manufacturing. On the surface, it may seem that the secret to making semiconductor devices more advanced lies in the design. But just as an architect’s design for a building may not be structurally feasible without the right materials, a semiconductor device design may not be functional if the materials and their interactions are not considered and optimized.

Billions of Particles, Countless Fibers, and Nine 9s

Here’s a challenge, say the number 9 out loud, nine times. 9, 9, 9, 9, 9, 9, 9, 9, 9.

Tiger Yield: The Importance of FOUP Maintenance

To wrap up the Year of the Tiger (2022), there are still lessons to be learned from the animal kingdom. A tiger out in the open roaming the savannah is at risk of injuries from predators, including human hunters. Wafers left out in the open in a fab are susceptible to damage that can cause dramatic yield drops. The larger the wafer diameter, the greater the risk.

Tiger Yield: Diverse Strategies to Coat Plasma Chamber Components

What do plasma chamber components have to do with deer or wild boar? These animals are potential sources of food for the tiger. The components are potential sources of contamination in the fab. Success in both cases relies on attention to detail and a flexible strategy. Whether you are chasing prey or particle contamination, a multi-pronged approach is best.

    Related Posts