hero-654791312-sized

Ensights

Science that is transforming lives and enabling the future

Filtration Fundamentals: Membrane Wetting

All Posts

Filtration Fundamentals: Membrane Wetting

Wetting the membrane is an important first step in preparing your filter. Wetting the membrane pores eliminates dry pathways where contaminants, like particles, gels, or bubbles could pass through, resulting in high defect levels in your process. Polymer membranes are natively hydrophobic or hydrophilic.

  • Hydrophobic – having a natural aversion to water
  • Hydrophilic – having a natural affinity to water

If a membrane is hydrophobic, it is difficult to wet with water. This results in a high contact angle, or a very round bead of water sitting on top of the membrane. If a membrane is hydrophilic, it is easily wet with water, and the water will penetrate the pores of the membrane. 

This phenomenon directly relates to the surface tension of the liquid and the surface energy of the membrane. In the case of hydrophobic membranes, the surface tension of water is much higher than the surface energy of the membrane.  To overcome this phenomenon, a lower surface tension fluid, like IPA (isopropyl alcohol), can be used to wet the membrane. 

Watch as Dr. Aiwen Wu, senior applications engineer, demonstrates the different wettability of various polymer membranes when exposed to DI (deionized) water and IPA. He also explains how the use of surface modification technology can alter wettability to enhance liquid filtration performance in specific applications.


Keep an eye out for the next blog where Dr. Wu describes how filter membranes can maintain wettability, even when confronted by outgassing chemistries.

Related: The Lithographer's Toolkit

Related Posts

Reducing our Environmental Impact: How We’re Making Biopharma Manufacturing More Sustainable

Biopharma manufacturing is an essential part of the healthcare industry, producing lifesaving treatments for patients around the world. Traditional manufacturing methods can have a significant environmental impact driven by stainless steel equipment requiring extensive cleaning and sterilization processes that consume substantial amounts of water and energy in addition to cleaning agents.

Achieving the Third Dimension Through Molecular Modeling

For decades, the semiconductor device manufacturing mantra was “How do we make them smaller, cheaper, and faster?” The pursuit of Moore’s Law – the doubling of transistors on a chip every two years – was achieved through planar scaling. But that approach could only go on for so long. The mantra now is “How do we improve power, performance, area, and cost (PPAC)?” At the 14 nm node, it was clear that the best way to push the limits of semiconductor device PPAC was to take it into the third dimension.

Entegris and Agilitech: Transforming Single-Use Technologies

Entegris is delighted to announce our collaboration with Agilitech, a pioneering partner to the biotech industry. Agilitech provides highly flexible, scalable, and future-proof single-use technologies for every step of the bioprocess. These include chromatography systems, mixers, and custom-tailored bioprocess controllers that scale from the laboratory to commercial production environments. This makes them a natural fit for the unique needs of life sciences customers.