hero-654791312-sized

Ensights

Science that is transforming lives and enabling the future

Filtration Fundamentals: Membrane Wetting

All Posts

Filtration Fundamentals: Membrane Wetting

Wetting the membrane is an important first step in preparing your filter. Wetting the membrane pores eliminates dry pathways where contaminants, like particles, gels, or bubbles could pass through, resulting in high defect levels in your process. Polymer membranes are natively hydrophobic or hydrophilic.

  • Hydrophobic – having a natural aversion to water
  • Hydrophilic – having a natural affinity to water

If a membrane is hydrophobic, it is difficult to wet with water. This results in a high contact angle, or a very round bead of water sitting on top of the membrane. If a membrane is hydrophilic, it is easily wet with water, and the water will penetrate the pores of the membrane. 

This phenomenon directly relates to the surface tension of the liquid and the surface energy of the membrane. In the case of hydrophobic membranes, the surface tension of water is much higher than the surface energy of the membrane.  To overcome this phenomenon, a lower surface tension fluid, like IPA (isopropyl alcohol), can be used to wet the membrane. 

Watch as Dr. Aiwen Wu, senior applications engineer, demonstrates the different wettability of various polymer membranes when exposed to DI (deionized) water and IPA. He also explains how the use of surface modification technology can alter wettability to enhance liquid filtration performance in specific applications.


Keep an eye out for the next blog where Dr. Wu describes how filter membranes can maintain wettability, even when confronted by outgassing chemistries.

Related: The Lithographer's Toolkit

Related Posts

Entegris Offers New FOUP Form-Factors for Non-Standard Wafers

Entegris Offers New FOUP Form-Factors for Non-Standard Wafers Over the last few years, 3D stacking has gone from a relatively niche fabrication method to an absolute necessity for cutting-edge applications. As chipmakers delve into smaller and smaller nodes, stacking and die-bonding wafers has become a preferred way of creating more processing power in a smaller space. Stacked and bonded wafers don’t behave the same way as 2D wafers: Wafers are thinned prior to bonding, which results in wafers that can sag when handled Bonded wafers are thicker and heavier than 2D wafers when assembled Bonded wafers can also warp following assembly Many automation tools rely on the predictable geometry and characteristics of 2D silicon wafers for safe handling and transport. While stacked and bonded wafers are a game-changer for miniaturization, they can also force manufacturing compromises unless chipmakers adopt specialized tools for the back end of the line (BEOL).

Entegris ESD Valves, Fittings, and Tubing: An Introduction

Entegris ESD Valves, Fittings, and Tubing: An Introduction

Gas Purifier Regeneration: Putting Circularity into Practice

Gas Purifier Regeneration: Putting Circularity into Practice