What do plasma chamber components have to do with deer or wild boar? These animals are potential sou...
Science that is transforming lives and enabling the future
What do plasma chamber components have to do with deer or wild boar? These animals are potential sources of food for the tiger. The components are potential sources of contamination in the fab. Success in both cases relies on attention to detail and a flexible strategy. Whether you are chasing prey or particle contamination, a multi-pronged approach is best.
Summer is the perfect season to enjoy the great outdoors with friends and family. Unless, of course, the air is filled with smoke and ash. The color-coded air quality readings too often go beyond the red danger zone into purple, with an Air Quality Index (AQI) of over 200 parts per million (ppm) of particulate contamination. This particulate count is far above what is safe even for healthy adults. In many parts of the western U.S. and beyond, purple air has become far too familiar.
The explosion of data generation has been accompanied by a corresponding explosion of memory storage technology options. The array of acronyms is astounding—NAND, DRAM, SRAM, MRAM, PCRAM—and finding the right option can be complicated. For applications that need nonvolatile memory with high switching speed and fast data access, storage class memory (SCM) can be a perfect fit.
Whether it is a deliberate strategy or serendipity, the innovations that shape our lives are the result of skilled people put into the right environment to create something new. Innovation is not an exact science, but persistence and some good luck have yielded all the amazing tools and technology we rely upon.
Entegris recently participated at SEMICON West in San Francisco, CA, July 12 – 14. After three years without a major onsite presence, the team was eager to be back in person and engage face-to-face with key customers and suppliers.
In February 2022, we entered the Lunar Year of the Tiger. Fittingly, semiconductor demand is as ferocious as the tiger and shows no signs of easing up soon. To meet this demand, the industry must be as efficient as possible.
A major difference exists as more features from our smartphones are integrated, replicated, and expanded in our cars - reliability expectations. A smartphone is designed to work effectively for 3-5 years while cars expect 10-15 years with standard maintenance. Failure in our cars can create dangerous situations for drivers, passengers, and others on the roadway. Designing and manufacturing our cars to ensure the functional safety along with the performance expectations of our new digital transportation systems is challenging manufacturing models for carmakers.
The expanding need for massive data storage and processing has driven the migration from 2D to 3D architectures for logic and memory chips. These complex architectures, with their high aspect ratio (HAR) designs and ultra-thin layers, are forcing advances in metal and oxide deposition processes. Atomic layer deposition (ALD) is usually the method of choice for producing uniform layers with precisely controlled composition.
Beyond being one of the fun words in the semiconductor industry, the “FOUP,” front-opening-unified-pod, represented a radical change that has influenced the productivity of each fab and contributed to the capabilities our electronic devices today. At the inception of Moore’s Law in 1965, 30 mm (1.25”) diameter wafers were the standard. Leading up to the late 1990’s, seven generations of incremental increases would be introduced. At each point, manufacturing efficiencies and device performance opportunities existed to get “Moore” out of each wafer. Wafer storage and transport was primarily accomplished in open-air cassettes and pods, leaving wafers more susceptible to physical damage and contamination.
Since the introduction of the mobile phone, scientists and engineers have been on a series of quests to make them smaller and smarter. And incarnation after incarnation, from shoe box large to smart phone tiny, they succeeded. Until, that is, demand for more data, more storage, faster speeds, and longer battery life created major roadblocks. New smartphone capabilities — from biometrics to more accurate geopositioning, from artificial intelligence to virtual reality — demanded significant improvements in chip power. Their constant use required pronounced leaps in battery life.
Advanced 3D architectures for logic and memory devices increasingly rely on atomic layer deposition (ALD) to achieve high-quality, nanoscale conformal coatings. ALD deposits reactants and precursor molecules in alternating pulses to create the desired chemical makeup of the layers. Because of its ability to produce extremely thin films of uniform thickness and composition, ALD has supplanted physical vapor deposition (PVD) as the dominant deposition process for leading-edge technology nodes.
The Entegris Safe Delivery Source® (SDS®) package has been the leader in providing subatmospheric specialty gas storage and delivery for ion implant dopant materials since its inception more than twenty years ago.
What do plasma chamber components have to do with deer or wild boar? These animals are potential sou...
Summer is the perfect season to enjoy the great outdoors with friends and family. Unless, of course,...
The explosion of data generation has been accompanied by a corresponding explosion of memory storage...
Whether it is a deliberate strategy or serendipity, the innovations that shape our lives are the res...
Entegris recently participated at SEMICON West in San Francisco, CA, July 12 – 14. After three years...
In February 2022, we entered the Lunar Year of the Tiger. Fittingly, semiconductor demand is as fero...
A major difference exists as more features from our smartphones are integrated, replicated, and expa...
The expanding need for massive data storage and processing has driven the migration from 2D to 3D ar...
Beyond being one of the fun words in the semiconductor industry, the “FOUP,” front-opening-unified-p...
Since the introduction of the mobile phone, scientists and engineers have been on a series of quests...
Advanced 3D architectures for logic and memory devices increasingly rely on atomic layer deposition ...
The Entegris Safe Delivery Source® (SDS®) package has been the leader in providing subatmospheric sp...
© 2024 Entegris. All Rights Reserved