hero-654791312-sized

Ensights

Science that is transforming lives and enabling the future

Achieving the Third Dimension Through Molecular Modeling

All Posts

Achieving the Third Dimension Through Molecular Modeling

For decades, the semiconductor device manufacturing mantra was “How do we make them smaller, cheaper, and faster?” The pursuit of Moore’s Law – the doubling of transistors on a chip every two years – was achieved through planar scaling. But that approach could only go on for so long. The mantra now is “How do we improve power, performance, area, and cost (PPAC)?” At the 14 nm node, it was clear that the best way to push the limits of semiconductor device PPAC was to take it into the third dimension.

Fin field-effect transistor (FinFET) devices were the industry’s first foray into the third dimension. Since then, we’ve seen exploration and development of gate-all-around (GAA) structures, forksheets, and complementary FETs (CFETs) as we move down the node scale from 3nm and beyond. The commonality of all these novel nanostructures is the increasing complexity and aspect ratio of 3D structures in logic, DRAM, and NAND flash.

blog-inline-12893-HARstructures-f200x600

Building 3D nanostructures poses holistic challenges to almost all semiconductor processes, including etch, deposition, implant, and cleans. The combination of finer features and high aspect ratios makes surface reactions a dominating factor because of an increase in surface-area-to-volume ratio. The unconventional physical and chemical behaviors of chemical species in these complex 3D nanostructures further complicates the chemical reactions. This has had an enormous impact on process chemistries and gases used, as formulations must now be tuned at the molecular level to achieve desired performance results.

For example, etch chemistries must be carefully formulated and processes timed to avoid redepositing silicon back onto the nanostructure which can form defects. The same goes for cleans formulations to effectively remove post-etch residue without corroding exposed metal surfaces and corresponding liner, barrier, or etch stop layers.

No matter how formulations are designed or applied, the key challenge lies in the prediction and validation of their performance within complex nanostructures in targeted applications. Conventional approaches to chemistry formulation are intensive, lengthy, and costly processes involving both chip manufacturers and solutions providers. Additionally, laboratory coupon tests used to test the formulations are not designed to capture the behaviors of formulations developed for 3D nanostructures. Without understanding these behaviors in a test environment, it is difficult to determine how the formulations will perform in high-volume manufacturing, which is the ultimate goal.

There is a better way. At Entegris, we’re using computational chemistry based on density functional theory (DFT) and molecular dynamics (MD) to support the development of chemistry formulations for 3D nanostructures.

DFT is used to investigate the local properties of a very small system of only a few particles based on their electronic structures. However, DFT alone does not describe the intermolecular interactions that are critical to understanding chemical reactions of materials on 3D nanostructures.

MD is used to analyze the physical movement of particles (atoms or molecules) based on the force field between them over a fixed period to provide a dynamic view of the system’s evolution. By implementing MD for modeling and simulation, we can calculate the macroscopic physical or chemical properties of formulations to understand their behaviors on 3D nanostructures.

When used in concert, MD complements the DFT and continuum models, and it also works with the two synergistically to extend the scope of applications in various areas of interest. In this way, we’re using MD to bridge conventional quantum mechanics’ DFT and rule-based continuum models already in place at Entegris.

To learn more about how Entegris is solving materials challenges for building 3D nanostructures, read the article “Embedding Computational Chemistry in Material Development: Applications of Molecular Dynamics on Formulation Design for Complex HAR 3D Nanostructures” in our 2022 Scientific Report.

Related Posts

Exploring the Superiority of Silicon Carbide in Optical Components

Exploring the Superiority of Silicon Carbide in Optical Components Silicon carbide (SiC) is a leading material for high-performance optical components, offering numerous advantages over traditional materials such as glass and metal. Its exceptional specific stiffness, high thermal conductivity, and outstanding dimensional stability position SiC as a superior choice compared to beryllium and low-expansion glass ceramics. Historically, the high costs associated with the preliminary shaping and final finishing of SiC have hindered its widespread adoption in optical systems. The material is both hard and strong, requiring precision machining with expensive diamond tooling on high-quality, rigid machine tools. However, advances in manufacturing techniques, such as near-net-shape slip casting, have demonstrated success in reducing costs despite necessitating significant diamond grinding. Building on this success, Entegris offers an entirely new way of creating SiC. Using our chemical vapor conversion process, we can create net- or near net-shaped SiC components in complex forms while spending much less time on fabrication.

Entegris Offers New FOUP Form-Factors for Non-Standard Wafers

Entegris Offers New FOUP Form-Factors for Non-Standard Wafers Over the last few years, 3D stacking has gone from a relatively niche fabrication method to an absolute necessity for cutting-edge applications. As chipmakers delve into smaller and smaller nodes, stacking and die-bonding wafers has become a preferred way of creating more processing power in a smaller space. Stacked and bonded wafers don’t behave the same way as 2D wafers: Wafers are thinned prior to bonding, which results in wafers that can sag when handled Bonded wafers are thicker and heavier than 2D wafers when assembled Bonded wafers can also warp following assembly Many automation tools rely on the predictable geometry and characteristics of 2D silicon wafers for safe handling and transport. While stacked and bonded wafers are a game-changer for miniaturization, they can also force manufacturing compromises unless chipmakers adopt specialized tools for the back end of the line (BEOL).

Mastering the SiC Wafer Transition

The use of silicon carbide (SiC) semiconductors offers a huge advantage for electric vehicles (EVs) due to lower switching losses and higher efficiencies, but cost has always been a drawback. SiC wafer manufacturing can suffer from high costs and lower yields, causing SiC semiconductors to cost up to eight times more than their silicon equivalents. This cost often gets passed on to the end customer, making EVs more expensive.