Changing one material in the semiconductor manufacturing process has a cascading effect on multiple ...
Science that is transforming lives and enabling the future
Changing one material in the semiconductor manufacturing process has a cascading effect on multiple process steps. Consider the replacement of tungsten (W) and copper (Cu) with molybdenum (Mo). Integrated device manufacturers (IDMs) are implementing Mo in advanced designs, focusing on 2-nanometer (nm) nodes and below. Mo is highly conductive, can be deposited without a titanium or titanium nitrid
Silicon carbide (SiC) has become popular with chipmakers. Its wide-bandgap structure offers many design benefits for the operations of power semiconductors. Compared to silicon, SiC wafers enable the fabrication of faster, more efficient devices that can both operate at higher temperatures and remain stable when deployed in extreme temperature environments. Processing SiC wafers using the same materials and methods as silicon wafers is not a viable option, however.
If you asked a semiconductor process engineer to name their biggest challenge when tackling the next technology node, they would likely tell you it is figuring out how to achieve high device yields. This is mainly due to an increase in possible points of contamination as the number of potential contaminants grows and their sizes shrink. It is becoming particularly difficult to detect metal contaminants and pinpoint their root cause so they can be eliminated. That’s because they can form anywhere in the process flow.
In the early days of semiconductor manufacturing, fabs would remove contaminants from their process fluids in a sequence that could be analogized to making a cup of coffee. By using a filter with tiny pores, large contaminants (coffee grounds) are separated from water. Because the coffee grounds are too large to pass through the filter, they can’t pass into the coffee we drink.
For decades, the semiconductor device manufacturing mantra was “How do we make them smaller, cheaper, and faster?” The pursuit of Moore’s Law – the doubling of transistors on a chip every two years – was achieved through planar scaling. But that approach could only go on for so long. The mantra now is “How do we improve power, performance, area, and cost (PPAC)?” At the 14 nm node, it was clear that the best way to push the limits of semiconductor device PPAC was to take it into the third dimension.
Things are not always as they appear. Take semiconductor manufacturing. On the surface, it may seem that the secret to making semiconductor devices more advanced lies in the design. But just as an architect’s design for a building may not be structurally feasible without the right materials, a semiconductor device design may not be functional if the materials and their interactions are not considered and optimized.
Here’s a challenge, say the number 9 out loud, nine times. 9, 9, 9, 9, 9, 9, 9, 9, 9.
To wrap up the Year of the Tiger (2022), there are still lessons to be learned from the animal kingdom. A tiger out in the open roaming the savannah is at risk of injuries from predators, including human hunters. Wafers left out in the open in a fab are susceptible to damage that can cause dramatic yield drops. The larger the wafer diameter, the greater the risk.
What do plasma chamber components have to do with deer or wild boar? These animals are potential sources of food for the tiger. The components are potential sources of contamination in the fab. Success in both cases relies on attention to detail and a flexible strategy. Whether you are chasing prey or particle contamination, a multi-pronged approach is best.
Summer is the perfect season to enjoy the great outdoors with friends and family. Unless, of course, the air is filled with smoke and ash. The color-coded air quality readings too often go beyond the red danger zone into purple, with an Air Quality Index (AQI) of over 200 parts per million (ppm) of particulate contamination. This particulate count is far above what is safe even for healthy adults. In many parts of the western U.S. and beyond, purple air has become far too familiar.
The explosion of data generation has been accompanied by a corresponding explosion of memory storage technology options. The array of acronyms is astounding—NAND, DRAM, SRAM, MRAM, PCRAM—and finding the right option can be complicated. For applications that need nonvolatile memory with high switching speed and fast data access, storage class memory (SCM) can be a perfect fit.
Whether it is a deliberate strategy or serendipity, the innovations that shape our lives are the result of skilled people put into the right environment to create something new. Innovation is not an exact science, but persistence and some good luck have yielded all the amazing tools and technology we rely upon.
Changing one material in the semiconductor manufacturing process has a cascading effect on multiple ...
Silicon carbide (SiC) has become popular with chipmakers. Its wide-bandgap structure offers many des...
If you asked a semiconductor process engineer to name their biggest challenge when tackling the next...
In the early days of semiconductor manufacturing, fabs would remove contaminants from their process ...
For decades, the semiconductor device manufacturing mantra was “How do we make them smaller, cheaper...
Things are not always as they appear. Take semiconductor manufacturing. On the surface, it may seem ...
Here’s a challenge, say the number 9 out loud, nine times. 9, 9, 9, 9, 9, 9, 9, 9, 9.
To wrap up the Year of the Tiger (2022), there are still lessons to be learned from the animal kingd...
What do plasma chamber components have to do with deer or wild boar? These animals are potential sou...
Summer is the perfect season to enjoy the great outdoors with friends and family. Unless, of course,...
The explosion of data generation has been accompanied by a corresponding explosion of memory storage...
Whether it is a deliberate strategy or serendipity, the innovations that shape our lives are the res...
© 2025 Entegris. All Rights Reserved