Ensights

Science that is transforming lives and enabling the future

Cars and Chips: The Acceleration of Electronic Systems

Cars and Chips: The Acceleration of Electronic Systems

The rapid increase of semiconductors in cars enables significant safety, connectivity, mobility, and sustainability improvements. The standards to measure reliability under the tough conditions a car presents are based on how vehicles operate today. Conventional vehicles are generally idle 95% of the time. As a result, the expected lifetime of the electronics systems is well beyond the lifetime of the vehicle itself. 

  • June 11, 2020

The Fight for Purity in Semiconductor Fabs Begins at the Chemical Manufacturer

To meet increasing sensitivity to contaminants in integrated circuit (IC) manufacturing, semiconductor fabs have begun looking to their chemical suppliers to adopt new contamination control standards that improve quality and assist in reducing wafer defects. Each material has several touch points along the chemical manufacturing, storage, transport, and delivery journey that could add or generate contaminants. Semiconductor fabs seek assurance from their materials suppliers that they will minimize opportunities for contaminants to end up on a wafer (Figure 1). 

  • May 20, 2020

Zero-Defect Collaborations in the Autonomous Vehicle Supply Chain

The automotive supply chain is transforming with the development of autonomous vehicles. The rise of electronic systems leads designers and manufacturers to seek collaboration partnerships. Antoine Amade, senior director EMEA/NA sales, was recently interviewed by SEMI to discuss the zero-defect challenges facing semiconductor fabs and the expansion of the GAAC (Global Automotive Advisory Council).

  • March 25, 2020

How to Select the Right Container System for Safe, Clean Chemical Delivery

Ensuring Purity and Safety Purity requirements continue to tighten as the semiconductor manufacturers continue to pursue advanced technology nodes.  Of all the industries that rely on a consistent supply of both raw and specialty chemical, the semiconductor industry sets the highest bar.

  • March 6, 2020

Hiding in Plain Sight: A Preventative Maintenance Strategy to Improve Gas Purity and Reduce Wafer Defects

During the semiconductor manufacturing process, contamination can be introduced from the air, equip­ment, cleanroom personnel, process water, process chemicals, and process gases.1 Careful identification of the contaminant source is required to best identify mitigation strategies that utilize filtration. Installing a filter can reduce defectivity, but this mitigation strategy will not indefinitely protect a gas stream from con­tamination. 

  • March 3, 2020

Exploring Possibilities: A Holistic Approach to Materials Processing for Scaled Devices

The desire for ever more computing power in a smaller footprint requires transistors that perform faster while consuming less power. However, new materials and architectures developed with these goals in mind are not easy to transfer from research and development to full-scale, high-volume production.

  • February 26, 2020

Filtration Fundamentals II: Membrane DeWetting

Dewetting and non-dewetting are not common terms used every day, yet are vital to the functionality of liquid filters.

  • February 13, 2020

2019 End of Year Highlights

Entegris Highlights 2019 2019 was a year of exciting change and significant accomplishments for Entegris including strategic acquisitions, supplier awards, footprint expansions and technology center openings, sustained Five+ Sigma quality levels, hundreds of issued technology patents, and so much more!

  • February 6, 2020

Filtration Fundamentals: Membrane Wetting

Wetting the membrane is an important first step in preparing your filter. Wetting the membrane pores eliminates dry pathways where contaminants, like particles, gels, or bubbles could pass through, resulting in high defect levels in your process. Polymer membranes are natively hydrophobic or hydrophilic.

  • January 30, 2020

    Related Posts