Science that is transforming lives and enabling the future

Solid Precursors for 3D Architectures: Materials

All Posts

Solid Precursors for 3D Architectures: Materials

Advanced 3D architectures for logic and memory devices increasingly rely on atomic layer deposition (ALD) to achieve high-quality, nanoscale conformal coatings. ALD deposits reactants and precursor molecules in alternating pulses to create the desired chemical makeup of the layers. Because of its ability to produce extremely thin films of uniform thickness and composition, ALD has supplanted physical vapor deposition (PVD) as the dominant deposition process for leading-edge technology nodes.

ALD is a mature process. When working with precursors that are gases at standard temperature and pressure, the precursors flow directly into the deposition chamber ready to deliver to the wafer. Not all precursors, however, are available in gaseous form.

Liquid and Solid Precursor Materials

Today’s most advanced chips require a greater variety of both device materials and interconnect materials. Many of the precursors needed to deposit these metals are liquids or solids at room temperature. The vapor pressure of the precursors determines the process conditions required to vaporize them for delivery to the wafer.

Some liquid precursors are delivered at room temperature and vaporized by lowering the pressure. Many integrated device manufacturers (IDMs) prefer working with liquids because they are easier to transport around the fab.solid-precursor-blog-inline-11732-powder-600x600

Solids are more challenging than liquids because of the need to heat the materials and the gas lines delivering them. Most solid precursors start as powders, which sublime into vapors for delivery to the wafer. Many of these materials are flammable or corrosive, which further complicates handling.

Solid precursors based on hafnium and zirconium have been used in semiconductor fabs for decades. New solid precursors based on aluminum (Al), molybdenum (Mo), and tungsten (W) are needed to meet the device and integration requirements for the latest generation of 3D devices. As layers become thinner, materials requirements often change.

The drive toward fluorine-free materials mitigates yield loss that can occur when fluorine reacts with nanoscale layers in devices. In the case of W precursors, tungsten pentachloride (WCl5) is replacing gaseous tungsten hexafluoride (WF6). WCl5 is a solid at room temperature.

Design constraints are not the only concern. For Al2O3 deposition, the conventional liquid precursors such as trimethyl aluminum (TMA) are extremely volatile and spontaneously ignite when exposed to air. Solid materials like AlCl3 provide a safer alternative.

Scaling Production

Fabs are accustomed to delivering gas and liquid precursors in high-volume production but has only been done for a few cases for solid precursors. Successful scaling requires precise and repeatable control over the precursor mass flow rate and chemical purity.

As a solid is heated, its vapor pressure increases, and the equipment must be adjusted to maintain the target precursor delivery rate. Unlike with gases, it is not possible to install pressure regulators at the point of delivery to adjust the pressure in situ. Mass flow rate testing ensures that the pressure remains steady as the precursor flows from the storage ampule to the ALD chamber.

Production should start with high-purity powders. If commercially available powders are not available at the required purity, it is best to work with a precursor supplier that can start from scratch and synthesize a custom-made, contamination-free formulation.

Choosing a precursor material supplier with in-house purification and synthesis capabilities greatly reduces the risk of contamination. The chosen supplier should provide a certificate of analysis that will give fabs confidence about the chemical composition and purity of the precursors.

Temperature control is also important during both storage and delivery. While the precursor remains stable during storage at room temperature, it must be heated at just the right rate for delivery to the ALD chamber. The temperature must be high enough to fully vaporize the precursor but not so high that it causes excess material delivery or precursor decomposition.

The introduction of solid precursors complicates deposition processes, but solutions are available. By starting with high-purity powders, choosing the right equipment, and using comprehensive analytical data to adjust process conditions, IDMs can successfully incorporate solid precursors into their process flow.

For more details see the white paper, “Solid Precursors for 3D Architectures: Materials, Processing, and Delivery,” on how advances in materials, processing, and delivery are enabling the next generation of advanced logic and memory chips.

Also, read our related blog on how to avoid defects using solid precursors and delivery systems.  

Related Posts

Entegris and Farrar Scientific Announce New Collaboration

Entegris is proud to announce a new relationship with Farrar Scientific, by Trane Technologies – a global climate innovator. Farrar offers best-in-class operating systems for ultra-cold temperature storage and controlled rate freeze/thaw chambers for pharmaceutical, biotech, and biorepository applications. Entegris offers the best-in-class Aramus™ bag for robust cold storage and transport. Collaborating with Farrar enables Entegris to offer a combined solution that accelerates the freeze/thaw process. Powered by Trane Technologies, Farrar’s solutions fill an unmet need for large pharmaceutical and biopharmaceutical customers requiring flexible, modular, and efficient ultra-low temperature freeze/thaw processing, as well as -80°C (-112°F) bulk storage reach-ins and -70°C (-94°F) pallet chambers. Farrar’s offerings and monitoring services, which include predictive analytics, provide an alternative to large-scale freezer farms or capital-intensive cold rooms used in the manufacturing of drugs, vaccines, and other biological products. Forced air convection cooling in Farrar’s controlled rate chamber greatly reduces +40˚ to -80˚C (+104° to -112°F) freeze/thaw times from days or weeks to hours, optimizing manufacturing efficiency and improving characteristics such as uniformity and repeatability versus competing technologies."This collaboration is a win-win for the industry,” said Holly Paeper, president, Trane Technologies Life Science Solutions. “Farrar and Entegris solutions jointly represent a step forward in reliability, simplicity, and affordability for end-to-end bioprocessing. We’re excited to discover how we can jointly advance precision temperature technology that helps protect quality and optimizes manufacturing.” Entegris will showcase Farrar’s controlled rate chamber in our new Life Sciences Technology Center in Billerica, MA, which offers life sciences customers the opportunity to leverage our expertise in cold-chain challenges to reduce costs, increase speed to market, and optimize processes. This premier facility brings Entegris’ tools and technologies together in one place, where customers can test equipment for freeze/thaw processes to determine which products best fit their needs. As part of our solutions for manufacturing challenges, we now offer Aramus shaped 2D single-use bags with custom shapes, sizes, and assembly configurations for customers’ space and function requirements. They are resistant to extreme cold temperatures and withstand gamma sterilization, which makes them a preferred solution for freezing, transporting, storing, and thawing drug substances, like COVID-19 vaccines, cell therapies, and gene therapies. “Our new technology center enables our customers to really understand the whole freezing process and optimize it before setting up a new lab of their own,” said John Lynch, vice president, Entegris. “Together with Farrar we are able to provide novel and high-value options for bulk drug freezing.”

Entegris and HOF begin Partnership to bring Added Value to Biopharm Bulk Drug Substance, Cold Storage, and Transport

Entegris is proud to announce a new relationship with HOF Sonderanlagenbau GmbH, an international provider of freeze/thaw equipment and special solutions for the pharmaceutical and biotechnology sectors. Entegris offers the best-in-class Aramus™ bag for robust cold storage and transport. Collaborating with HOF enables Entegris to offer a combined solution for our customers that accelerate the freeze/thaw process and help showcase our new Life Sciences Technology Center, built to offer customers the opportunity to leverage our cold-chain supply expertise to optimize processes, reduce costs, and increase speed to market.

Fire and Smoke: Outdoor Air Quality and Your Fab

Summer is the perfect season to enjoy the great outdoors with friends and family. Unless, of course, the air is filled with smoke and ash. The color-coded air quality readings too often go beyond the red danger zone into purple, with an Air Quality Index (AQI) of over 200 parts per million (ppm) of particulate contamination. This particulate count is far above what is safe even for healthy adults. In many parts of the western U.S. and beyond, purple air has become far too familiar.