hero-654791312-sized

Ensights

Science that is transforming lives and enabling the future

Magnetic Bead Removal Using Microcarrier and Cell Separation System

All Posts

Magnetic Bead Removal Using Microcarrier and Cell Separation System

Inconsistent results and deviation are major issues in cell therapy manufacturing, primarily resulting from historically manual methods, scarcity of proprietary tools, and lack of operator training. With this difficult process also comes another hurdle–time. Providing a safe vein-to-vein transmission is critical when a patient is waiting (in many cases) for lifesaving therapy. How can we bridge the gap between speed, quality, safety, and consistency?

 

Magnetic beads have been the benchmark for cell and gene therapy (CGT), and the FDA holds strict requirements for their removal in CGT processing. Current methods require expensive, complex equipment, costly infrastructure, and highly skilled personnel. Despite specialized training, a single individual still needs to operate the process impeccably each time and avoid risking contamination.

 

blog-inline-12693-600x630Through the Magnetic Bead Removal Using Microcarrier and Cell Separation Study, Entegris’ microcarrier and cell separation system was incorporated into an optimized bioreactor subculturing process to maximize viable cell recovery and obtain a high split ratio between bioreactors during scale-up. At the end of each bioreactor run, a small volume of culture was taken as a representative sample of the entire culture. This sample was processed using the conventional tube method and the yield obtained was considered 100% cell recovery.

 

With customized chamber and mesh sizes (10 - 200 µm), the microcarrier and cell separation system can be used for a wide array of applications such as retaining aggregate cells or microcarrier beads, cell washing, and harvest, all while achieving the same or better performance as alternative separation methods.

 

Our closed microcarrier and cell separation system provides scalability, compatibility with a wide array of microcarriers, and can reduce deviations . Entegris is the only manufacturer of small bags specifically built for cells. By partnering with us, you’ll be able to increase yield, reduce deviations, and avoid the risk of residual beads in your final product.

 

To learn more read our application note

 

Related Posts

Designing for Extended Performance in Life Science Contaminant Removal

Designing for Extended Performance in Life Science Contaminant Removal Filters have a finite lifetime, and their performance also changes over time. How do you get the most performance over the longest lifespan?

A Thermal Stability Study of Phosphoramidites Employed in Oligonucleotide Synthesis

A Thermal Stability Study of Phosphoramidites Employed in Oligonucleotide Synthesis In the dynamic world of drug design, thermal stability plays a crucial role, often determining the success of innovative treatments. As researchers push the boundaries of medicine, the need for robust and effective RNA- and DNA-based drugs has never been greater. This is where the phosphoramidite method of DNA synthesis shines, but understanding the thermal stability of its components, especially phosphoramidites, is essential. In this blog, we will explore why thermal stability is vital in drug development, delve into a study focused on phosphoramidites, and discuss its implications for the field.

Reducing Holdup Volume in Sterile Filtration

Reducing Holdup Volume in Sterile Filtration