Science that is transforming lives and enabling the future

Hiding in Plain Sight: A Preventative Maintenance Strategy to Improve Gas Purity and Reduce Wafer Defects

All Posts

Hiding in Plain Sight: A Preventative Maintenance Strategy to Improve Gas Purity and Reduce Wafer Defects

During the semiconductor manufacturing process, contamination can be introduced from the air, equip­ment, cleanroom personnel, process water, process chemicals, and process gases.1 Careful identification of the contaminant source is required to best identify mitigation strategies that utilize filtration. Installing a filter can reduce defectivity, but this mitigation strategy will not indefinitely protect a gas stream from con­tamination. 

Filters are often chosen when equipment is first installed, however that equipment may be used for many different process nodes, which could change filtration requirements. The filter chosen for one process node may not be the most efficient option and change-out during preventive maintenance activities are frequently overlooked.

Entegris has worked with multiple partners to under­stand the impact age has on gas filter performance. The result of these evaluations is filter replacement schedule guidelines that mitigate filter failure and particle excursions. Table 1 summarizes these guidelines.

Table 1. Gas filter changeout guidelines

Process Gas 1 – 3 years < 1 year (corrosive)
Inert Gas 5 – 7 years 1 – 3 years
HMDS < 1 year  


Entegris has collected significant historical data to understand gas filter failure and make recommenda­tions about smart filter replacement. The case study highlighted below shows how filtration efficacy can decline over time.  Therefore, management of gas filter changeout should be considered on a gas-by-gas basis and when equipment is extended for use into new technology nodes.

In this case study, a gas filter was used for hexamethyldisilazane (HMDS) on a photolithography track for over three years. It was ultimately removed from the track when defect inspection results, like those in Figure 7, were observed by the user. When this filter was tested for pressure drop after it was returned, it was again obvious that the performance had significantly deteriorated over time (Figure 8).

Particle size: 60 nm ~ 1,000 nm


Figure 7. Wafer map resulting from the continued use of a gas filter beyond its useful life. Source: Entegris


Air Flow Rate vs. Pressure Drop (Outlet to Atmosphere)


Figure 8. Pressure drop testing comparing a used (three years) filter and a new filter. Source: Entegris

Figure 9 further confirms the pressure drop and on-wafer data. The images on the left show another distinct color difference of the membrane between the inlet and outlet portions, indicating that the filter had been saturated with contaminants. The SEM images on the right show significant contamination on the upstream side of the membrane. In this case, no defects were observed on the downstream portion of the membrane.


Figure 9. (Left) images used of the filter analysis showing the differences in color of the membrane between the upstream and downstream side. (Right) SEM images of the upstream and downstream portions of the membrane, including contamination on the upstream side of the membrane. Source: Entegris. 

An increase in pressure drop or a reduction in filter efficiency are common phenomena in gas unit processes. Recognizing the signs of possible failure is sometimes difficult as systems become increasingly automated. Particle excursions can occur when automated gas delivery systems increase inlet pressure beyond a manufacturer’s specification. Secondary effects may also include increased utility expense and reduced gas delivery equipment lifetimes as a result of back pressure from clogged or clogging filters.

Incorporating routine gas filter replacement into your preventive maintenance programs can increase gas purity and reduce the risks associated with contami­nants reaching the wafer surface.2


1 Mark Jamison, 300 mm Wafer Fab Contamination Control, HDR Architecture, Inc.

2 Eliminating Unwanted Oxygen: Preventing Device Failure at the Source, Entegris, Inc.

Learn more at https://www.entegris.com/gas-filters


Related Posts

Yield Advantages Through Maintaining and Upgrading FOUP Populations

One of the longest held beliefs in semiconductor manufacturing is that yield is the single most import­ant factor in overall wafer processing costs. Even incremental yield increases can significantly reduce manufacturing cost per wafer, or cost per square centimeter of silicon. As such, yield improvement is critical to any successful semiconductor operation. As semiconductor device nodes continue to scale, and 7 nm lines are ramping to production, this belief continues to ring true.

Synergistic CMP Systems Improve Yield

Shrinking feature size, advances in interconnect metals, and the need for ever tighter defectivity control all point to the growing importance of chemical mechanical planarization (CMP) to optimize fab yields. More layers of each chip require CMP to achieve planarity specifications, and contamination must be kept to a minimum.

Examining Chip Manufacturing Challenges for Advanced Logic Architecture

The Fourth Industrial Revolution is surrounding us with extraordinary technologies that did not exist a few years ago. Autonomous vehicles are already being tested on public streets. Drones range from simple adolescent playthings to short- and long-range military and civilian purposes like surveying landforms, shooting movies, and delivering packages. Vast amounts of video content, created by professionals and amateurs alike, are being filmed, streamed, and stored. Surveillance, both fixed and mobile, is becoming commonplace, server farms are bigger than ever, and 4G networks are being supplemented or replaced with 5G. What all these trends have in common is that they generate enormous amounts of data that must be processed, transported, and stored faster and more reliably than ever before.