hero-654791312-sized

Ensights

Science that is transforming lives and enabling the future

How Predictable is Your Lithography Process?

All Posts

How Predictable is Your Lithography Process?

Lithographer’s face the challenge to translate designs into reproducible patterns that meet their yield, parametric performance, and reliability goals. Success or failure relies heavily on the controls in place that limit process variation. Recognizing and addressing all the sources of lithography pattern variations can preoccupy lithographers.

 

Hence the question, where can pattern flaws originate?

 

 

Lithography

 Click the image to see this process in motion

 

You’re not alone in mitigating these challenges.  Collaboration between fabs, equipment makers, materials suppliers, and designers can lead to a more holistic approach to finding the root cause.

 

Join the conversation at www.entegris.com/pattern to identify the sources of your pattern integrity challenges.

 

 

Related Posts

Driving the Future with SiC

The semiconductor industry is abuzz with discussions around silicon carbide (SiC) — a material poised to revolutionize power electronics. Global megatrends like sustainability, the rise of electric vehicles, and the growing demands of AI systems have made SiC essential for enabling efficient, high-performance solutions. At Entegris, we’ve embraced this momentum, working with industry-leading chipmakers to help make an impact in the SiC space. Here’s a review of some of our exciting work around SiC over the past year.

Advancing Space Domain Awareness

Advancing Space Domain Awareness: MIT Lincoln Laboratory's Innovative Mirror Technology and the Role of Entegris SUPERSiC®-SP Enhancing our understanding of the space environment is crucial to navigating the ever-evolving landscape of space exploration. As part of collaboration efforts between the U.S. and Japan to boost space domain awareness through cutting-edge mirror technology, MIT Lincoln Laboratory (MIT LL) built payloads hosted on Japanese satellites. MIT LL built two identical space payloads for the Japanese QZS-6 and QZS-7 satellites and selected Entegris’ SUPERSiC-SP silicon carbide (SiC) material to serve as a substrate for their mirrors. They also chose our chemical vapor deposition (CVD) SiC solution to serve as a mirror cladding. These payloads are part of a collaborative effort between the U.S. and Japan to augment space domain awareness of objects in or near geosynchronous orbit (GEO). This initiative not only showcases international cooperation but also highlights the innovative engineering challenges and solutions involved in creating functional space payloads.

Exploring the Superiority of Silicon Carbide in Optical Components

Exploring the Superiority of Silicon Carbide in Optical Components Silicon carbide (SiC) is a leading material for high-performance optical components, offering numerous advantages over traditional materials such as glass and metal. Its exceptional specific stiffness, high thermal conductivity, and outstanding dimensional stability position SiC as a superior choice compared to beryllium and low-expansion glass ceramics. Historically, the high costs associated with the preliminary shaping and final finishing of SiC have hindered its widespread adoption in optical systems. The material is both hard and strong, requiring precision machining with expensive diamond tooling on high-quality, rigid machine tools. However, advances in manufacturing techniques, such as near-net-shape slip casting, have demonstrated success in reducing costs despite necessitating significant diamond grinding. Building on this success, Entegris offers an entirely new way of creating SiC. Using our chemical vapor conversion process, we can create net- or near net-shaped SiC components in complex forms while spending much less time on fabrication.