hero-654791312-sized

Ensights

Science that is transforming lives and enabling the future

Filtration Fundamentals II: Membrane DeWetting

All Posts

Filtration Fundamentals II: Membrane DeWetting

Dewetting and non-dewetting are not common terms used every day, yet are vital to the functionality of liquid filters.

  • Wetting – the process of filling a membrane’s pores with a liquid
  • Dewetting – the phenomenon where a filter membrane’s pores accumulate air over time, blocking liquid flow
  • Non-dewetting – a membrane surface that has been modified to maintain wettability over time, even when confronted by outgassing chemistries

The terminology aside, the value of a non-dewetting membrane can’t be understated in terms of operational efficiency and effectiveness. A filter that dewets in a particular semiconductor unit process can contribute to an increase in defectivity or a reduction in productivity due to flow loss.

Watch as Dr. Aiwen Wu, senior applications engineer, demonstrates membrane properties designed to address outgassing chemistries. 

 

Related: The Lithographer's Toolkit

Related Posts

Looking Back at 60 Years of Moore’s Law

Looking Back at 60 Years of Moore’s Law

Empowering Semiconductor and Device Performance with Improved Point-of-Use Filtration

Empowering Semiconductor and Device Performance with Improved Point-of-Use Filtration

Driving the Future with SiC

Driving the Future with SiC The semiconductor industry is abuzz with discussions around silicon carbide (SiC) — a material poised to revolutionize power electronics. Global megatrends like sustainability, the rise of electric vehicles, and the growing demands of AI systems have made SiC essential for enabling efficient, high-performance solutions. At Entegris, we’ve embraced this momentum, working with industry-leading chipmakers to help make an impact in the SiC space. Here’s a review of some of our exciting work around SiC over the past year.