hero-654791312-sized

Ensights

Science that is transforming lives and enabling the future

Filtration Fundamentals II: Membrane DeWetting

All Posts

Filtration Fundamentals II: Membrane DeWetting

Dewetting and non-dewetting are not common terms used every day, yet are vital to the functionality of liquid filters.

  • Wetting – the process of filling a membrane’s pores with a liquid
  • Dewetting – the phenomenon where a filter membrane’s pores accumulate air over time, blocking liquid flow
  • Non-dewetting – a membrane surface that has been modified to maintain wettability over time, even when confronted by outgassing chemistries

The terminology aside, the value of a non-dewetting membrane can’t be understated in terms of operational efficiency and effectiveness. A filter that dewets in a particular semiconductor unit process can contribute to an increase in defectivity or a reduction in productivity due to flow loss.

Watch as Dr. Aiwen Wu, senior applications engineer, demonstrates membrane properties designed to address outgassing chemistries. 

 

Related: The Lithographer's Toolkit

Related Posts

Empowering Semiconductor and Device Performance with Improved Point-of-Use Filtration

Empowering Semiconductor and Device Performance with Improved Point-of-Use Filtration

Driving the Future with SiC

Driving the Future with SiC The semiconductor industry is abuzz with discussions around silicon carbide (SiC) — a material poised to revolutionize power electronics. Global megatrends like sustainability, the rise of electric vehicles, and the growing demands of AI systems have made SiC essential for enabling efficient, high-performance solutions. At Entegris, we’ve embraced this momentum, working with industry-leading chipmakers to help make an impact in the SiC space. Here’s a review of some of our exciting work around SiC over the past year.

Entegris Offers New FOUP Form-Factors for Non-Standard Wafers

Entegris Offers New FOUP Form-Factors for Non-Standard Wafers Over the last few years, 3D stacking has gone from a relatively niche fabrication method to an absolute necessity for cutting-edge applications. As chipmakers delve into smaller and smaller nodes, stacking and die-bonding wafers has become a preferred way of creating more processing power in a smaller space. Stacked and bonded wafers don’t behave the same way as 2D wafers: Wafers are thinned prior to bonding, which results in wafers that can sag when handled Bonded wafers are thicker and heavier than 2D wafers when assembled Bonded wafers can also warp following assembly Many automation tools rely on the predictable geometry and characteristics of 2D silicon wafers for safe handling and transport. While stacked and bonded wafers are a game-changer for miniaturization, they can also force manufacturing compromises unless chipmakers adopt specialized tools for the back end of the line (BEOL).