hero-654791312-sized

Ensights

Science that is transforming lives and enabling the future

2019 End of Year Highlights

All Posts

2019 End of Year Highlights

Entegris Highlights 2019

2019 was a year of exciting change and significant accomplishments for Entegris including strategic acquisitions, supplier awards, footprint expansions and technology center openings, sustained Five+ Sigma quality levels, hundreds of issued technology patents, and so much more!

View it all in our highlight reel!

 

 

Related Posts

Designing for Extended Performance in Life Science Contaminant Removal

Designing for Extended Performance in Life Science Contaminant Removal Filters have a finite lifetime, and their performance also changes over time. How do you get the most performance over the longest lifespan?

Entegris Offers New FOUP Form-Factors for Non-Standard Wafers

Entegris Offers New FOUP Form-Factors for Non-Standard Wafers Over the last few years, 3D stacking has gone from a relatively niche fabrication method to an absolute necessity for cutting-edge applications. As chipmakers delve into smaller and smaller nodes, stacking and die-bonding wafers has become a preferred way of creating more processing power in a smaller space. Stacked and bonded wafers don’t behave the same way as 2D wafers: Wafers are thinned prior to bonding, which results in wafers that can sag when handled Bonded wafers are thicker and heavier than 2D wafers when assembled Bonded wafers can also warp following assembly Many automation tools rely on the predictable geometry and characteristics of 2D silicon wafers for safe handling and transport. While stacked and bonded wafers are a game-changer for miniaturization, they can also force manufacturing compromises unless chipmakers adopt specialized tools for the back end of the line (BEOL).

A Thermal Stability Study of Phosphoramidites Employed in Oligonucleotide Synthesis

A Thermal Stability Study of Phosphoramidites Employed in Oligonucleotide Synthesis In the dynamic world of drug design, thermal stability plays a crucial role, often determining the success of innovative treatments. As researchers push the boundaries of medicine, the need for robust and effective RNA- and DNA-based drugs has never been greater. This is where the phosphoramidite method of DNA synthesis shines, but understanding the thermal stability of its components, especially phosphoramidites, is essential. In this blog, we will explore why thermal stability is vital in drug development, delve into a study focused on phosphoramidites, and discuss its implications for the field.